Predictive Maintenance

Predictive maintenance (PdM) is a type of condition-based maintenance that monitors the condition of assets through sensor devices. These sensor devices supply data in real-time, which is then used to predict when the asset will require maintenance and thus, prevent equipment failure.

Predictive maintenance is the most advanced type of maintenance currently available. With time-based maintenance, organizations run the risk of performing too much maintenance or not enough. And with reactive maintenance, maintenance is performed when needed, but at the cost of unscheduled downtime. Predictive maintenance solves these issues. With PdM, maintenance is only scheduled when specific conditions are met and before the asset breaks down.

A Brief History of Predictive Maintenance

Organizations started using predictive maintenance tools around the start of the 21st century. To monitor conditions of assets, organizations used a periodic or offline approach. A study documenting three PdM case studies from 2001 states: “The vibration measurements are taken periodically—one time per month in general—and vibration is monitored by comparing previous measurements to new ones.”

Today, a continuous or online approach is used to monitor asset condition. Remote monitoring is also possible by connecting an IoT sensor device to maintenance software. When specific conditions are met, a work order for an inspection is triggered.

Types of Predictive Maintenance

Vibration Analysis

Machine Speed: High | Machine Type: Mechanical | Cost: Medium

This is the go-to type of analysis for predictive maintenance inside manufacturing plants with high-rotating machinery. Because it’s been around longer than other types of condition monitoring, it’s relatively cost-effective. In addition to detecting looseness like in the example above, vibration analysis can also discover imbalance, misalignment, and bearing wear.

Acoustic Analysis (Sonic)

Machine Speed: Low, High | Machine Type: Mechanical | Cost: Low

This type of analysis requires less money to implement and is used for low- and high-rotating machinery. It’s particularly popular among lubrication technicians.

According to an article by Machinery Lubrication, “Acoustic analysis is similar to vibration analysis; however, its focus is not to detect causes for rotating equipment failure by measuring and monitoring vibrations at discrete frequencies and recording data for trending purposes.

Instead, acoustic bearing analysis is intended for the lubrication technician and focuses on proactive lubrication measures.”

Acoustic Analysis (Ultrasonic)

Machine Speed: Low, High | Machine Type: Mechanical, Electrical | Cost: High

While sonic acoustic analysis borders on the line of proactive and predictive maintenance, ultrasonic acoustic analysis is solely used for predictive maintenance efforts. And because it can identify sounds related to machine friction and stress in the ultrasonic range, it’s used for electrical equipment that emit subtler sounds as well as mechanical equipment. It’s argued that this type of analysis predicts imminent breakdowns better than vibration or oil analysis.

Infrared Analysis

Machine Speed: Low, High | Machine Type: Mechanical, Electrical | Cost: Low

This type of analysis is not dependent on an asset’s rotational speed or loudness. Therefore, it’s suitable for many different types of assets. When temperature is a good indicator of potential issues, infrared analysis is the most cost-effective tool for predictive maintenance. It’s often used to identify problems related to cooling, air flow, and even motor stress.

How Does Predictive Maintenance Work?

The first step in practicing predictive maintenance is establishing baselines. You need to monitor an asset's conditional baseline and collect data before installing sensors. That way, when you begin to collect conditional data, there is a “control” to compare any abnormalities to. From there, it’s simple—any time a piece of equipment performs outside of normal parameters, the sensors trigger your predictive maintenance protocol. Typically, a work order is generated in your CMMS and assigned to technicians, so they can perform any required repairs to address the anomaly.

How to Implement Predictive Maintenance

In most instances, ROI cases are presented to management before predictive maintenance is implemented on the facility floor. Maintenance staff and machine operators are also trained on how to use the PdM technology. After this happens, true implementation begins.

1. Establish Baselines

The maintenance team establishes acceptable condition limits for assets that will have sensors.

2. Install Internet of Things (IoT) Devices

The relevant sensor is then affixed to the asset. For instance, a vibration meter is attached to a mechanical asset with gears, and a temperature sensor is attached to a boiler.

3. Connect Devices to Software

The IoT device is connected to a CMMS or remote dashboard where data is collected and analyzed.

4. Schedule Maintenance

Inspections are automatically triggered by a CMMS when the condition limit is exceeded or the person monitoring the dashboard schedules the inspection manually.

Predictive Maintenance Example

A centrifugal pump motor in a coal preparation plant is a vital asset for day-to-day operations. To prevent unscheduled downtime, the maintenance team decides to use predictive maintenance technology. Because the pump motor is a large piece of mechanical equipment that performs heavy rotations, the obvious choice is to monitor vibrations with vibration meters.

The team attaches a vibration meter close to the pump’s inner bearing and establishes a normal baseline measurement, visualized through a waveform graph (below, left). A few months later, the vibration meter identifies a spike in acceleration (below, right). The maintenance team reviews this new data remotely and schedules an inspection. The technician who performs the inspection finds a loose ball-bearing and repairs it.

Moving forward, the team connects the vibration meter to its CMMS. Now, when the same spike is identified, a fault with the ball-bearing is predicted and a work order is automatically triggered to perform the repair.

Note: This example is inspired from a real use case documented in this study.

The Benefits and ROI of Predictive Maintenance

Predictive maintenance stands to improve your maintenance and reliability program by using technology and best practices to streamline processes and increase productivity. A few of the top benefits of predictive maintenance are:

  • Increasing asset uptime by 30% and reducing unexpected failures by 55%.
  • Streamlining maintenance costs through reduced labor, equipment, and inventory costs.
  • Improving safety.

According to a paper by the US Department of Energy, “a well-orchestrated predictive maintenance program will all but eliminate catastrophic equipment failures.” Compared to a preventive maintenance program, cost savings are 8 to 12 percent higher; and compared to a reactive maintenance program, cost savings range from 30 to 40 percent.

Other numbers stated by the Department of Energy include:

  • Return on investment: 10 times
  • Reduction in maintenance costs: 25% to 30%
  • Elimination of breakdowns: 70% to 75%
  • Reduction in downtime: 35% to 45%
  • Increase in production: 20% to 25%


Predictive maintenance is not for every organization, especially those that have yet to implement planned maintenance activities. But for larger organizations that have outgrown traditional PMs and have additional budget, predictive maintenance can provide an ROI that turns the maintenance department into a source of cost-savings and higher profits.

Want to keep reading?

Return on Investment (Predictice Maintenance)

Data from the Department of Energy indicates that predictive maintenance (PdM) can yield a potential return on investment (ROI) of roughly ten times the cost.
View Article

What Is Predictive Maintenance in Manufacturing?

Find out how to develop and implement a predictive maintenance plan that keeps your manufacturing plant productive, efficient, and safe.
View Article

The 6 Sensors for Predictive Maintenance That Optimize Repair Timelines

Today, predictive maintenance relies on sensors in three major areas: early fault detection, failure detection, and CMMS integration.
View Article


Leading the Way to a Better Future for Maintenance and Reliability

Your asset and equipment data doesn't belong in a silo. UpKeep makes it simple to see where everything stands, all in one place. That means less guesswork and more time to focus on what matters.

Capterra Shortlist 2021
IDC CMMS Leader 2021
[Review Badge] GetApp CMMS 2022 (Dark)
[Review Badge] Gartner Peer Insights (Dark)
G2 Leader