Predictive maintenance (PdM) is a type of condition-based maintenance that monitors the condition of assets through sensor devices. These sensor devices supply data in real-time, which is then used to predict when the asset will require maintenance and thus, prevent equipment failure.
Predictive maintenance is the most advanced type of maintenance currently available. With time-based maintenance, organizations run the risk of performing too much maintenance or not enough. And with reactive maintenance, maintenance is performed when needed, but at the cost of unscheduled downtime. Predictive maintenance solves these issues. With PdM, maintenance is only scheduled when specific conditions are met and before the asset breaks down.
Organizations started using predictive maintenance tools around the start of the 21st century. To monitor conditions of assets, organizations used a periodic or offline approach. A study documenting three PdM case studies from 2001 states: “The vibration measurements are taken periodically—one time per month in general—and vibration is monitored by comparing previous measurements to new ones.”
Today, a continuous or online approach is used to monitor asset condition. Remote monitoring is also possible by connecting an IoT sensor device to maintenance software. When specific conditions are met, a work order for an inspection is triggered.
Machine Speed: High | Machine Type: Mechanical | Cost: Medium
This is the go-to type of analysis for predictive maintenance inside manufacturing plants with high-rotating machinery. Because it’s been around longer than other types of condition monitoring, it’s relatively cost-effective. In addition to detecting looseness like in the example above, vibration analysis can also discover imbalance, misalignment, and bearing wear.
Machine Speed: Low, High | Machine Type: Mechanical | Cost: Low
This type of analysis requires less money to implement and is used for low- and high-rotating machinery. It’s particularly popular among lubrication technicians.
According to an article by Machinery Lubrication, “Acoustic analysis is similar to vibration analysis; however, its focus is not to detect causes for rotating equipment failure by measuring and monitoring vibrations at discrete frequencies and recording data for trending purposes.
Instead, acoustic bearing analysis is intended for the lubrication technician and focuses on proactive lubrication measures.”
Machine Speed: Low, High | Machine Type: Mechanical, Electrical | Cost: High
While sonic acoustic analysis borders on the line of proactive and predictive maintenance, ultrasonic acoustic analysis is solely used for predictive maintenance efforts. And because it can identify sounds related to machine friction and stress in the ultrasonic range, it’s used for electrical equipment that emit subtler sounds as well as mechanical equipment. It’s argued that this type of analysis predicts imminent breakdowns better than vibration or oil analysis.
Machine Speed: Low, High | Machine Type: Mechanical, Electrical | Cost: Low
This type of analysis is not dependent on an asset’s rotational speed or loudness. Therefore, it’s suitable for many different types of assets. When temperature is a good indicator of potential issues, infrared analysis is the most cost-effective tool for predictive maintenance. It’s often used to identify problems related to cooling, air flow, and even motor stress.
The first step in practicing predictive maintenance is establishing baselines. You need to monitor an asset's conditional baseline and collect data before installing sensors. That way, when you begin to collect conditional data, there is a “control” to compare any abnormalities to. From there, it’s simple—any time a piece of equipment performs outside of normal parameters, the sensors trigger your predictive maintenance protocol. Typically, a work order is generated in your CMMS and assigned to technicians, so they can perform any required repairs to address the anomaly.
In most instances, ROI cases are presented to management before predictive maintenance is implemented on the facility floor. Maintenance staff and machine operators are also trained on how to use the PdM technology. After this happens, true implementation begins.
The maintenance team establishes acceptable condition limits for assets that will have sensors.
The relevant sensor is then affixed to the asset. For instance, a vibration meter is attached to a mechanical asset with gears, and a temperature sensor is attached to a boiler.
The IoT device is connected to a CMMS or remote dashboard where data is collected and analyzed.
Inspections are automatically triggered by a CMMS when the condition limit is exceeded or the person monitoring the dashboard schedules the inspection manually.
A centrifugal pump motor in a coal preparation plant is a vital asset for day-to-day operations. To prevent unscheduled downtime, the maintenance team decides to use predictive maintenance technology. Because the pump motor is a large piece of mechanical equipment that performs heavy rotations, the obvious choice is to monitor vibrations with vibration meters.
The team attaches a vibration meter close to the pump’s inner bearing and establishes a normal baseline measurement, visualized through a waveform graph (below, left). A few months later, the vibration meter identifies a spike in acceleration (below, right). The maintenance team reviews this new data remotely and schedules an inspection. The technician who performs the inspection finds a loose ball-bearing and repairs it.
Moving forward, the team connects the vibration meter to its CMMS. Now, when the same spike is identified, a fault with the ball-bearing is predicted and a work order is automatically triggered to perform the repair.
Note: This example is inspired from a real use case documented in this study.
Predictive maintenance stands to improve your maintenance and reliability program by using technology and best practices to streamline processes and increase productivity. A few of the top benefits of predictive maintenance are:
According to a paper by the US Department of Energy, “a well-orchestrated predictive maintenance program will all but eliminate catastrophic equipment failures.” Compared to a preventive maintenance program, cost savings are 8 to 12 percent higher; and compared to a reactive maintenance program, cost savings range from 30 to 40 percent.
Other numbers stated by the Department of Energy include:
Predictive maintenance is not for every organization, especially those that have yet to implement planned maintenance activities. But for larger organizations that have outgrown traditional PMs and have additional budget, predictive maintenance can provide an ROI that turns the maintenance department into a source of cost-savings and higher profits.
Return on Investment (Predictice Maintenance)
What Is Predictive Maintenance in Manufacturing?
The 6 Sensors for Predictive Maintenance That Optimize Repair Timelines
4,000+ COMPANIES RELY ON ASSET OPERATIONS MANAGEMENT
Your asset and equipment data doesn't belong in a silo. UpKeep makes it simple to see where everything stands, all in one place. That means less guesswork and more time to focus on what matters.